Skip to main content

Vehicle Suggestions

· 14 min read
Sparsh Agarwal

/img/content-blog-raw-blog-vehicle-suggestions-untitled.png

Introduction

The customer owns a franchise store for selling Tesla Automobiles. The objective is to predict user preferences using social media data.

Task 1 - Suggest the best vehicle for the given description

Task 2 - Suggest the best vehicle for the given social media id of the user

Customer queries

// car or truck or no mention of vehicle type means Cyber Truck
// SUV mention means Model X
const one = "I'm looking for a fast suv that I can go camping without worrying about recharging".;
const two = "cheap red car that is able to go long distances";
const three = "i am looking for a daily driver that i can charge everyday, do not need any extras";
const four = "i like to go offroading a lot on my jeep and i want to do the same with the truck";
const five = "i want the most basic suv possible";
const six = "I want all of the addons";
// mentions of large family or many people means model x
const seven = "I have a big family and want to be able to take them around town and run errands without worrying about charging";
  • Expected output
    const oneJson = {
    vehicle: 'Model X',
    trim : 'adventure',
    exteriorColor: 'whiteExterior',
    wheels: "22Performance",
    tonneau: "powerTonneau",
    packages: "",
    interiorAddons: "",
    interiorColor: "blackInterior",
    range: "extendedRange",
    software: "",
    }

    const twoJSON = {
    vehicle: 'Cyber Truck',
    trim : 'base',
    exteriorColor: 'whiteExterior',
    wheels: "21AllSeason",
    tonneau: "powerTonneau",
    packages: "",
    interiorAddons: "",
    interiorColor: "blackInterior",
    range: "extendedRange",
    software: "",
    }

    const threeJSON = {
    vehicle: 'Cyber Truck',
    trim : 'base',
    exteriorColor: 'whiteExterior',
    wheels: "21AllSeason",
    tonneau: "powerTonneau",
    packages: "",
    interiorAddons: "",
    interiorColor: "blackInterior",
    range: "standardRange",
    software: "",
    }

    const fourJSON = {
    vehicle: 'Cyber Truck',
    trim : 'adventure',
    exteriorColor: 'whiteExterior',
    wheels: "20AllTerrain",
    tonneau: "powerTonneau",
    packages: "offroadPackage,matchingSpareTire",
    interiorAddons: "",
    interiorColor: "blackInterior",
    range: "extendedRange",
    software: "",
    }

    const fiveJSON = {
    vehicle: 'Model X',
    trim : 'base',
    exteriorColor: 'whiteExterior',
    wheels: "20AllTerrain",
    tonneau: "manualTonneau",
    packages: "",
    interiorAddons: "",
    interiorColor: "blackInterior",
    range: "standardRange",
    software: "",
    }

    const sixJSON = {
    vehicle: 'Cyber Truck',
    trim : 'adventure',
    exteriorColor: 'whiteExterior',
    wheels: "20AllTerrain",
    tonneau: "powerTonneau",
    packages: "offroadPackage,matchingSpareTire",
    interiorAddons: "wirelessCharger",
    interiorColor: "blackInterior",
    range: "extendedRange",
    software: "selfDrivingPackage",
    }

    const sevenJSON = {
    vehicle: 'Model X',
    trim : 'base',
    exteriorColor: 'whiteExterior',
    wheels: "21AllSeason",
    tonneau: "powerTonneau",
    packages: "",
    interiorAddons: "",
    interiorColor: "blackInterior",
    range: "mediumRange",
    software: "",
    }
  • Vehicle model configurations
    const configuration = {
    meta: {
    configurationId: '???',
    storeId: 'US_SALES',
    country: 'US',
    version: '1.0',
    effectiveDate: '???',
    currency: 'USD',
    locale: 'en-US',
    availableLocales: ['en-US'],
    },

    defaults: {
    basePrice: 50000,
    deposit: 1000,
    initialSelection: [
    'adventure',
    'whiteExterior',
    '21AllSeason',
    'powerTonneau',
    'blackInterior',
    'mediumRange',
    ],
    },

    groups: {
    trim: {
    name: { 'en-US': 'Choose trim' },
    multiselect: false,
    required: true,
    options: ['base', 'adventure'],
    },
    exteriorColor: {
    name: { 'en-US': 'Choose paint' },
    multiselect: false,
    required: true,
    options: [
    'whiteExterior',
    'blueExterior',
    'silverExterior',
    'greyExterior',
    'blackExterior',
    'redExterior',
    'greenExterior',
    ],
    },
    wheels: {
    name: { 'en-US': 'Choose wheels' },
    multiselect: false,
    required: true,
    options: ['21AllSeason', '20AllTerrain', '22Performance'],
    },
    tonneau: {
    name: { 'en-US': 'Choose tonneau cover' },
    multiselect: false,
    required: true,
    options: ['manualTonneau', 'powerTonneau'],
    },
    packages: {
    name: { 'en-US': 'Choose upgrades' },
    multiselect: true,
    required: false,
    options: ['offroadPackage', 'matchingSpareTire'],
    },
    interiorColor: {
    name: { 'en-US': 'Choose interior' },
    multiselect: false,
    required: true,
    options: ['greyInterior', 'blackInterior', 'greenInterior'],
    },
    interiorAddons: {
    name: { 'en-US': 'Choose upgrade' },
    multiselect: true,
    required: false,
    options: ['wirelessCharger'],
    },
    range: {
    name: { 'en-US': 'Choose range' },
    multiselect: false,
    required: true,
    options: ['standardRange', 'mediumRange', 'extendedRange'],
    },
    software: {
    name: { 'en-US': 'Choose upgrade' },
    multiselect: true,
    required: false,
    options: ['selfDrivingPackage'],
    },
    specs: {
    name: { 'en-US': 'Specs overview *' },
    attrs: {
    description: {
    'en-US':
    "* Options, specs and pricing may change as we approach production. We'll contact you to review any updates to your preferred build.",
    },
    },
    multiselect: false,
    required: false,
    options: ['acceleration', 'power', 'towing', 'range'],
    },
    },

    options: {
    base: {
    name: { 'en-US': 'Base' },
    attrs: {
    description: { 'en-US': 'Production begins 2022' },
    },
    visual: true,
    price: 0,
    },
    adventure: {
    name: { 'en-US': 'Adventure' },
    attrs: {
    description: { 'en-US': 'Production begins 2021' },
    },
    visual: true,
    price: 10000,
    },

    standardRange: {
    name: { 'en-US': 'Standard' },
    attrs: {
    description: { 'en-US': '230+ miles' },
    },
    price: 0,
    },
    mediumRange: {
    name: { 'en-US': 'Medium' },
    attrs: {
    description: { 'en-US': '300+ miles' },
    },
    price: 3000,
    },
    extendedRange: {
    name: { 'en-US': 'Extended' },
    attrs: {
    description: { 'en-US': '400+ miles' },
    },
    price: 8000,
    },

    greenExterior: {
    name: { 'en-US': 'Adirondack Green' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/green.svg',
    },
    visual: true,
    price: 2000,
    },
    blueExterior: {
    name: { 'en-US': 'Trestles Blue' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/blue.svg',
    },
    visual: true,
    price: 1000,
    },
    whiteExterior: {
    name: { 'en-US': 'Arctic White' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/white.svg',
    },
    visual: true,
    price: 0,
    },
    silverExterior: {
    name: { 'en-US': 'Silver Gracier' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/silver.svg',
    },
    visual: true,
    price: 1000,
    },
    blackExterior: {
    name: { 'en-US': 'Cosmic Black' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/black.svg',
    },
    visual: true,
    price: 1000,
    },
    redExterior: {
    name: { 'en-US': 'Red Rocks' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/red.svg',
    },
    visual: true,
    price: 2000,
    },
    greyExterior: {
    name: { 'en-US': 'Antracite Grey' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/exteriorcolors/grey.svg',
    },
    visual: true,
    price: 1000,
    },

    '21AllSeason': {
    name: { 'en-US': '21" Cast Wheel - All Season' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/wheels/twentyone.svg',
    },
    visual: true,
    price: 0,
    },
    '20AllTerrain': {
    name: { 'en-US': '20" Forged Wheel - All Terrain' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/wheels/twenty.svg',
    },
    visual: true,
    price: 0,
    },
    '22Performance': {
    name: { 'en-US': '22" Cast Wheel - Performance' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/wheels/twentytwo.svg',
    },
    visual: true,
    price: 2000,
    },

    manualTonneau: {
    name: { 'en-US': 'Manual' },
    attrs: {
    description: { 'en-US': 'Description here' },
    },
    price: 0,
    },
    powerTonneau: {
    name: { 'en-US': 'Powered' },
    attrs: {
    description: { 'en-US': 'Description here' },
    },
    price: 0,
    },

    blackInterior: {
    name: { 'en-US': 'Black' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/interiorcolors/black.svg',
    },
    visual: true,
    price: 0,
    },
    greyInterior: {
    name: { 'en-US': 'Grey' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/interiorcolors/grey.svg',
    },
    visual: true,
    price: 1000,
    },
    greenInterior: {
    name: { 'en-US': 'Green' },
    attrs: {
    imageUrl: '/public/images/configurationOptions/interiorcolors/green.svg',
    },
    visual: true,
    price: 2000,
    },

    offroadPackage: {
    name: { 'en-US': 'Off-Road' },
    attrs: {
    description: { 'en-US': 'Lorem ipsum dolor sit amet.' },
    imageUrl: '/public/images/configurationOptions/packages/offroad.png',
    },
    visual: true,
    price: 5000,
    },
    matchingSpareTire: {
    name: { 'en-US': 'Matching Spare Tire' },
    attrs: {
    description: { 'en-US': 'Full sized tire' },
    imageUrl: '/public/images/configurationOptions/packages/spare.png',
    },
    price: 500,
    },

    wirelessCharger: {
    name: { 'en-US': 'Wireless charger' },
    attrs: {
    description: { 'en-US': 'Lorem ipsum dolor sit amet.' },
    imageUrl: '/public/images/configurationOptions/packages/wireless.png',
    },
    price: 100,
    },
    selfDrivingPackage: {
    name: { 'en-US': 'Autonomy' },
    attrs: {
    description: { 'en-US': 'Lorem ipsum dolor sit amet.' },
    imageUrl: '/public/images/configurationOptions/packages/autonomy.png',
    },
    price: 7000,
    },

    acceleration: {
    name: { 'en-US': '0 - 60 mph' },
    attrs: {
    units: { 'en-US': 'sec' },
    decimals: 1,
    },
    value: 3.4,
    },
    power: {
    name: { 'en-US': 'Horsepower' },
    attrs: {
    units: { 'en-US': 'hp' },
    },
    value: 750,
    },
    towing: {
    name: { 'en-US': 'Towing' },
    attrs: {
    units: { 'en-US': 'lbs' },
    },
    value: 10000,
    },
    range: {
    name: { 'en-US': 'Range' },
    attrs: {
    units: { 'en-US': 'mi' },
    },
    value: 400,
    },
    }
    };

Public datasets

  • Instagram: 16539 images from 972 Instagram influencers (link)
  • TechCrunchPosts: (link)
  • Tweets: (link)

Primary (available for academic use only, need university affiliation for access)

Secondary (low quality data, not sure if can be used at all)

Logical Reasoning

  • If I implicitly rate pictures of blue car, that means I might prefer a blue car.
  • If I like posts of self-driving, that means I might prefer a self-driving option.

Scope

Scope 1

/img/content-blog-raw-blog-vehicle-suggestions-untitled-2.png

Scope 2

media content categories: text and images

platforms: facebook, twitter and instagram

implicit rating categories: like, comment, share

columns: userid, timestamp, platform, type, content, rating

Model Framework

Model framework 1

  1. Convert user's natural language query into vector using Universal Sentence Embedding model
  2. Create a product specs binary matrix based on different categories
  3. Find TopK similar query vectors using cosine distance
  4. For each TopK vector, Find TopM product specs using interaction table weights
  5. For each TopM specification, find TopN similar specs using binary matrix
  6. Show all the qualified product specifications

Model framework 2

  1. Seed data: 10 users with ground-truth persona, media content and implicit ratings
  2. Inflated data: 10 users with media content and implicit ratings
  3. media content → Implicit rating (A)
  4. media content → feature vector (B) + (A) → weighted pooling → similar users (C)
  5. media content → QA model → slot filling → global pooling → item associations (D)
  6. (C) → content-based filtering → item recommendations → (D) → top-k recommendations

User selection

Model framework 3

User-User Similarity (clustering)

  • User → Media content → Embedding → Average pooling
  • Cosine Similarity of user's social vector with other user's social vector

User-Item Similarity (reranking)

  • User → Implicit Rating on media content M → M's correlation with item features
  • Item features: familySize
  • Cosine Similarity of user's social vector with item's feature vector

User-User Similarity (clustering)

  • User → Media content → Embedding → Average pooling
  • Cosine Similarity of user's social vector with other user's social vector

User-Item Similarity (reranking)

  • User → Implicit Rating on media content M → M's correlation with item features
  • Item features: familySize
  • Cosine Similarity of user's social vector with item's feature vector

Model framework 4

/img/content-blog-raw-blog-vehicle-suggestions-untitled-3.png

Text → Prepare → Vectorize → Average → Similar Users

Image → Prepare → Vectorize → Average → Similar Users

Text → Prepare → QA → Slot filling

Image → Prepare → VQA → Slot filling

Image → Similar Image from users → Detailed enquiry

Model framework 5

  1. Topic Clusters Text
  2. Topic Clusters Image
  3. Fetch raw text and images
  4. Combine, Clean and Store text in text dataframe
  5. Vectorize Texts
  6. Cosine similarities of texts with topic clusters
  7. Vectorize Images
  8. Cosine similarities of images with topic clusters

Experimental Setup

  • Experiment 1
    import numpy as np
    import pandas as pd
    import tensorflow_hub as hub
    from itertools import product
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.metrics.pairwise import cosine_similarity

    vehicle = ['modelX', 'cyberTruck']
    trim = ['adventure', 'base']
    exteriorColor = ['whiteExterior', 'blueExterior', 'silverExterior', 'greyExterior', 'blackExterior', 'redExterior', 'greenExterior']
    wheels = ['20AllTerrain', '21AllSeason', '22Performance']
    tonneau = ['powerTonneau', 'manualTonneau']
    interiorColor = ['blackInterior', 'greyInterior', 'greenInterior']
    range = ['standardRange', 'mediumRange', 'extendedRange']
    packages = ['offroadPackage', 'matchingSpareTire', 'offroadPackage,matchingSpareTire', 'None']
    interiorAddons = ['wirelessCharger', 'None']
    software = ['selfDrivingPackage', 'None']

    specs_cols = ['vehicle', 'trim', 'exteriorColor', 'wheels', 'tonneau', 'interiorColor', 'range', 'packages', 'interiorAddons', 'software']
    specs = pd.DataFrame(list(product(vehicle, trim, exteriorColor, wheels, tonneau, interiorColor, range, packages, interiorAddons, software)),
    columns=specs_cols)

    enc = OneHotEncoder(handle_unknown='error', sparse=False)
    specs = pd.DataFrame(enc.fit_transform(specs))

    specs_ids = specs.index.tolist()

    query_list = ["I'm looking for a fast suv that I can go camping without worrying about recharging",
    "cheap red car that is able to go long distances",
    "i am looking for a daily driver that i can charge everyday, do not need any extras",
    "i like to go offroading a lot on my jeep and i want to do the same with the truck",
    "i want the most basic suv possible",
    "I want all of the addons",
    "I have a big family and want to be able to take them around town and run errands without worrying about charging"]

    queries = pd.DataFrame(query_list, columns=['query'])
    query_ids = queries.index.tolist()

    const_oneJSON = {
    'vehicle': 'modelX',
    'trim' : 'adventure',
    'exteriorColor': 'whiteExterior',
    'wheels': "22Performance",
    'tonneau': "powerTonneau",
    'packages': "None",
    'interiorAddons': "None",
    'interiorColor': "blackInterior",
    'range': "extendedRange",
    'software': "None",
    }

    const_twoJSON = {
    'vehicle': 'cyberTruck',
    'trim' : 'base',
    'exteriorColor': 'whiteExterior',
    'wheels': "21AllSeason",
    'tonneau': "powerTonneau",
    'packages': "None",
    'interiorAddons': "None",
    'interiorColor': "blackInterior",
    'range': "extendedRange",
    'software': "None",
    }

    const_threeJSON = {
    'vehicle': 'cyberTruck',
    'trim' : 'base',
    'exteriorColor': 'whiteExterior',
    'wheels': "21AllSeason",
    'tonneau': "powerTonneau",
    'packages': "None",
    'interiorAddons': "None",
    'interiorColor': "blackInterior",
    'range': "standardRange",
    'software': "None",
    }

    const_fourJSON = {
    'vehicle': 'cyberTruck',
    'trim' : 'adventure',
    'exteriorColor': 'whiteExterior',
    'wheels': "20AllTerrain",
    'tonneau': "powerTonneau",
    'packages': "offroadPackage,matchingSpareTire",
    'interiorAddons': "None",
    'interiorColor': "blackInterior",
    'range': "extendedRange",
    'software': "None",
    }

    const_fiveJSON = {
    'vehicle': 'modelX',
    'trim' : 'base',
    'exteriorColor': 'whiteExterior',
    'wheels': "20AllTerrain",
    'tonneau': "manualTonneau",
    'packages': "None",
    'interiorAddons': "None",
    'interiorColor': "blackInterior",
    'range': "standardRange",
    'software': "None",
    }

    const_sixJSON = {
    'vehicle': 'cyberTruck',
    'trim' : 'adventure',
    'exteriorColor': 'whiteExterior',
    'wheels': "20AllTerrain",
    'tonneau': "powerTonneau",
    'packages': "offroadPackage,matchingSpareTire",
    'interiorAddons': "wirelessCharger",
    'interiorColor': "blackInterior",
    'range': "extendedRange",
    'software': "selfDrivingPackage",
    }

    const_sevenJSON = {
    'vehicle': 'modelX',
    'trim' : 'base',
    'exteriorColor': 'whiteExterior',
    'wheels': "21AllSeason",
    'tonneau': "powerTonneau",
    'packages': "None",
    'interiorAddons': "None",
    'interiorColor': "blackInterior",
    'range': "mediumRange",
    'software': "None",
    }

    historical_data = pd.DataFrame([const_oneJSON, const_twoJSON, const_threeJSON, const_fourJSON, const_fiveJSON, const_sixJSON, const_sevenJSON])

    input_vec = enc.transform([specs_frame.append(historical_data.iloc[0], sort=False).iloc[-1]])
    idx = np.argsort(-cosine_similarity(input_vec, specs.values))[0,:][:1]
    rslt = enc.inverse_transform([specs.iloc[idx]])

    interactions = pd.DataFrame(columns=['query_id','specs_id'])
    interactions['query_id'] = queries.index.tolist()
    input_vecs = enc.transform(specs_frame.append(historical_data, sort=False).iloc[-len(historical_data):])
    interactions['specs_id'] = np.argsort(-cosine_similarity(input_vecs, specs.values))[:,0]

    module_url = "https://tfhub.dev/google/universal-sentence-encoder/4"
    embed_model = hub.load(module_url)
    def embed(input):
    return embed_model(input)
    query_vecs = embed(queries['query'].tolist()).numpy()

    _query = input('Please enter query: ') or 'i want the most basic suv possible'
    _query_vec = embed([_query]).numpy()
    _match_qid = np.argsort(-cosine_similarity(_query_vec, query_vecs))[0,:][:1]
    _match_sid = interactions.loc[interactions['query_id']==_match_qid[0], 'specs_id'].values[0]
    input_vec = enc.transform([specs_frame.append(historical_data.iloc[0], sort=False).iloc[-1]])
    idx = np.argsort(-cosine_similarity([specs.iloc[_match_sid].values], specs.values))[0,:][:5]
    results = []
    for x in idx:
    results.append(enc.inverse_transform([specs.iloc[x]]))
    _temp = np.array(results).reshape(5,-1)
    _temp = pd.DataFrame(_temp, columns=specs_frame.columns)
    print(_temp)

Experiment 2

Celeb Scraping

Facebook Scraping

/img/content-blog-raw-blog-vehicle-suggestions-untitled-4.png

Twitter Scraping

/img/content-blog-raw-blog-vehicle-suggestions-untitled-5.png

Dataframe

/img/content-blog-raw-blog-vehicle-suggestions-untitled-6.png

Insta Image Grid

/img/content-blog-raw-blog-vehicle-suggestions-untitled-7.png

User Text NER

/img/content-blog-raw-blog-vehicle-suggestions-untitled-8.png

Experiment 3

Topic model

Topic scores

/img/content-blog-raw-blog-vehicle-suggestions-untitled-9.png

JSON rules

/img/content-blog-raw-blog-vehicle-suggestions-untitled-10.png

Results and Discussion

  • API with 3 input fields - Facebook username, Twitter handle & Instagram username
  • The system will automatically scrap the user's publicly available text and images from these 3 social media platforms and provide a list of recommendations from most to least preferred product